[1]史玉聪?,许华冲?,陈孝银*.Toll 样受体7 介导抗流感病毒免疫反应研究进展[J].中国预防兽医学报,2019,(12):1289-1293.[doi:10.3969/j.issn.1008-0589.201805003]
 [J].Chinese journal of preventive veterinary medicine,2019,(12):1289-1293.[doi:10.3969/j.issn.1008-0589.201805003]
点击复制

Toll 样受体7 介导抗流感病毒免疫反应研究进展()
分享到:

《中国预防兽医学报》[ISSN:1008-0589/CN:23-1417/S]

卷:
期数:
2019年12
页码:
1289-1293
栏目:
综述
出版日期:
2020-01-25

文章信息/Info

文章编号:
1008-0589(2019)12-1289-05
作者:
 

史玉聪?许华冲?陈孝银*  

 (暨南大学 中医学院,广东 广州 510632)
分类号:
S852.65
DOI:
10.3969/j.issn.1008-0589.201805003
文献标志码:
B

参考文献/References:

[1]Mifsud E J, Tan A C, Reading P C, et al. Mapping the pulmonary environment of animals protected from virulent H1N1 influenza infection using the TLR-2 agonist Pam (2) Cys [J]. Immunol Cell Biol, 2016, 94: 169-176.
[2]Spinner J L, Oberoi H S, Yorgensen Y M, et al. Methylglycol chitosan and a synthetic TLR4 agonist enhance immune responses to influenza vaccine administered sublingually [J]. Vaccine, 2015, 33: 5845-5853.
[3]甘珊珊,何秀苗,韦平. 鸡Toll样受体研究进展[J]. 动物医学进展,2010,31(9):76-80.
[4]Bach J F. The hygiene hypothesis in autoimmunity: the role of pathogens and commensals[J]. Nat Rev Immunol, 2017, 18:105-121.
[5]Hashimoto C, Hudson K L, Anderson K V. The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein [J]. Cell, 1988, 52:269-279.
[6]Nomura N, Miyajima N, Sazuka T, et al. Prediction of the coding sequences of unidentified human genes. I. The coding sequences of 40 new genes (KIAA0001-KIAA0040) deduced by analysis of randomly sampled cDNA clones from human immature myeloid cell line KG-1 (supplement) [J]. DNA Res, 1994, 1: 47-56.
[7]Taguchi T, Mitcham J L, Dower S K, et al. Chromosomal localization of TIL, a gene encoding a protein related to the Drosophila transmembrane receptor Toll, to human chromosome 4p14 [J]. Genomics, 1996, 32: 486-488.
[8]Lemaitre B, Nicolas E, Michaut L, et al. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults [J]. Cell, 1996, 86:973-983.
[9]Fujita Y, Hirai K, Nishida K, et al. 6-(4-Amino-2-butyl-imidazoquinolyl)-norleucine: Toll-like receptor 7 and 8 agonist amino acid for self-adjuvanting peptide vaccine [J]. Amino Acids, 2016, 48: 1319-1329.
[10]Du Xin, Poltorak A, Wei Y, et al. Three novel mammalian toll-like receptors: gene structure, expression, and evolution [J]. Eur Cytokine Netw, 2000, 11(3): 362-371.
[11]王晓月,赵鹏翔,Adzavon,等. Toll样受体7的研究进展[J]. 细胞与分子免疫学杂志,2016,32(9):1267-1271.
[12]Heil F, Ahmad-Nejad P, Hemmi H, et al. The Toll-like receptor 7 (TLR7)-specific stimulus loxoribine uncovers a strong relationship within the TLR7, 8 and 9 subfamily [J]. Eur J Immunol, 2003, 33(11): 2987-2997.
[13]Qin Jin-zhong, Yao Jian-hong, Cui G, et al. TLR8-mediated NF-κB and JNK activation are TAK1-independent and MEKK3- dependent [J]. J Biol Chem, 2006, 281(30): 21013-21021.
[14]Anna J X Zhang, Can Li, Kelvin K W To, et al. Toll-like receptor 7 agonist imiquimod in combination with influenza vaccine expedites and augments humoral immune responses against influenza A(H1N1) pdm09 virus infection in BALB/c mice [J]. Clin Vaccine Immunol, 2014, 21: 570-579.
[15]Wei Liang-meng, Jiao Pei-rong, Yuan Run-yu, et al. Goose Toll-like receptor 7 (TLR7), myeloid differentiation factor 88 (MyD88) and antiviral molecules involved in anti-H5N1 highly pathogenic avian influenza virus response [J]. Vet Immunol Immunop, 2013, 153: 99-106.
[16]卢春化,马艳梅,王红霞. 黄芪多糖对流感病毒感染小鼠急性肺损伤的保护作用的实验研究[J]. 现代预防医学, 2017,44(11):2040-2049.
[17]王思源,王雪峰,岳志军,等. 银翘散对IV感染小鼠肺组织中TLR7/Myd88/NF-κB信号表达的影响[J]. 辽宁中医杂志,2014,(5):1051-1053.
[18]齐玲,邵敏明,刘妮,等. 清热透表方对流感病毒小鼠TLR7、MyD88、NF-κB、AP-1 mRNA及蛋白的表达[J]. 时珍国医国药,2016,(2):322-324.
[19]Li Pei-qiong, Su Xiao-bo, Ye Yan-chou, et al. Catalpol inhibits inflammatory response in rat alveolar macrophages infected with influenza virus by downregulating TLR7, MyD88, NF-kappa B, and PLA(2) [J]. Int J Clin Exp Med, 2016, 9: 1871-1877.
[20]吴莹,金叶智,张舒,等. 汉黄芩素对流感病毒感染肺泡巨噬细胞NF-κB核转位及表达的影响及机制[J]. 中国实验方剂学杂志,2012,18(18):161-165.
[21]Maschalidi S, Hassler S, Blanc F, et al. Asparagine endopeptidase controls anti-influenza virus immune responses through TLR7 activation [J]. PLoS Pathog, 2012, 8: e1002841.
[22]Jeisy-Scott V, Davis W G, Patel J R, et al. Increased MDSC accumulation and Th2 biased response to influenza A virus infection in the absence of TLR7 in mice [J]. PLoS One, 2011, 6: e25242.
[23]Blasius A L, Beutler B. Intracellular Toll-like receptors [J]. Immunity, 2010, 32(3): 305.
[24]Pang I K, Pillai P S, Iwasaki A. Efficient influenza A virus replication in the respiratory tract requires signals from TLR7 and RIG-I[J]. Proc Natl Acad Sci USA, 2013, 110: 13910- 13915.
[25]Hipp M M, Shepherd D, Gileadi U, et al. Processing of human Toll-like receptor 7 by furin-like proprotein convertases is required for its accumulation and activity in endosomes [J]. Immunity, 2013, 39(4): 711-721.
[26]Kaminski M M, Ohnemus A, Cornitescu M, et al. Plasmacytoid dendritic cells and Toll-like receptor 7-dependent signalling promote efficient protection of mice against highly virulent influenza A virus [J]. J Gen Virol, 2012, 93: 555-559.
[27]Yang J Y, Kim M S, Kim E, et al. Enteric viruses ameliorate gut inflammation via Toll-like receptor 3 and Toll-like receptor 7-mediated interferon-0 production [J]. Immunity, 2016, 44(4): 889-900.
[28]华莎. 甲型H3N2人流感病毒的关键抗原变异位点与抗原进化研究[D]. 北京:中国科学院大学,2015.
[29]Michaelis M, Doerr H W, Cinatl J Jr. Of chickens and men: avian influenza in humans [J]. Curr Mol Med, 2009, 9(2):131-151.
[30]Dürdal Us. Cytokine storm in avian influenza [J]. Mikrobiyoloji Bülteni, 2008, 42(2): 365-380.
[31]To E E, Broughton B R, Hendricks K S, et al. Influenza A virus and TLR7 activation potentiate NOX2 oxidase-dependent ROS production in macrophages [J]. Free Radic Res, 2014, 48(8): 940-947.
[32]Lee Y H, Huang J H, Chang T H, et al. Mucosa-associated lymphoid tissue lymphoma translocation protein 1 positively modulates matrix metalloproteinase-9 production in alveolar macro- phages upon Toll-like receptor 7 signaling and influenza virus infection [J]. Front Immunol, 2017, 8: 1177.
[33]Makni-Maalej K, Boussetta T, Hurtado-Nedelec M, et al. The TLR7/8 agonist CL097 primes N-formyl-methionyl-leucyl-phenylalanine-stimulated NADPH oxidase activation in human neutrophils:
[34]critical role of p47phox phosphorylation and the proline isomerase Pin1 [J]. J Immunol, 2012, 189(9): 4657-4665.
[35]Krammer F, Palese P. Universal influenza virus vaccines: need for clinical trials [J]. Nat Immunol, 2014, 15: 3-5.
[36]Krammer F, Palese P. Influenza virus hemagglutinin stalk-based antibodies and vaccines [J]. Curr Opin Virol, 2013, 3: 521-530.
[37]Krammer F, Palese P, Steel J. Advances in universal influenza virus vaccine design and antibody mediated therapies based on conserved regions of the hemagglutinin [J]. Curr Top Microbiol, 2015, 386: 301-321.
[38]Koff W C, Burton D R, Johnson P R, et al. Accelerating next- generation vaccine development for global disease prevention [J]. Science, 2013, 340(6136): 1232910-1232910.
[39]陈婷婷,胡云龙,刘兵,等. Toll样受体7小分子激动剂偶联流感病毒灭活疫苗的研究[J]. 中国医药导报,2016,13(9):26-30.
[40]Hammerbeck D M, Burleson G R, Schuller C J, et al. Administration of a dual toll-like receptor 7 and toll-like receptor 8 agonist protects against influenza in rats [J]. Antivir Res, 2007, 73:1-11.
[41]Wu Sha, Jiang Zhen-You, Sun Yi-Fan, et al. Microbiota regulates the TLR7 signaling pathway against respiratory tract influenza A virus infection [J]. Curr Microbiol, 2013, 67: 414- 422.
[42]Jeisy-Scott V, Kim J H, Davis W G, et al. TLR7 Recognition is dispensable for influenza virus A infection but important for the induction of hemagglutinin-specific antibodies in response to the 2009 pandemic split vaccine in mice [J]. J Virol, 2012, 86:10988-10998.
[43]Scheller J, Chalaris A, Schmidtarras D, et al. The pro- and anti-inflammatory properties of the cytokine interleukin-6[J]. Biochim Biophys Acta, 2011, 1813(5): 878-888.
[44]Sch?觟n M P, Sch?觟n M, Klotz K N. The small antitumoral immune response modifier imiquimod interacts with adenosine receptor signaling in a TLR7- and TLR8-independent fashion [J]. J Invest Dermatol, 2006, 126(6): 1338-1347.
[45]Kandimalla E, Lan T, Wang D, et al. Stabilized immune modulatory RNA (SIMRA) compounds: U.S. Patent 8, 188, 261 [P]. 2012-5-29.
[46]Steed A L, Christophi G P, Kaiko G E, et al. The microbial metabolite desaminotyrosine protects from influenza through type I interferon [J]. Science, 2017, 357(6350): 498-502.
[47]吴莎,颜宇琦,张梦媛,等. 肠道厌氧菌失调加重流感病毒感染小鼠肺部免疫病理损伤[J]. 细胞与分子免疫学杂志,2016,32(4):433-436.
[48]吴遥. 肠道菌群失调对流感病毒感染小鼠急性肺损伤的影响[J]. 现代预防医学,2018,45(04):124-[]129.
[49]刘骏,王辉,孙经梦,等. 流感病毒感染对小鼠肠道菌群的影响及桑叶的调节作用[J]. 中国微生态学杂志,2013,25(9):1001-1009.
[50]陈琛,江振友,宋克玉,等. 中草药对小鼠肠道菌群影响的实验研究[J]. 中国微生态学杂志,2011,23(01):15-17.
[51]邓力,聂娇,逄蓬,等. 新加香薷饮对湿热环境下流感病毒性肺炎小鼠治疗作用的比较研究[J]. 新中医,2016,48(02):235-238.
[52]李秋露,郑珂,逄蓬,等. 新加香薷饮对湿热型流感小鼠的疗效机制研究[J]. 山东中医药大学学报,2017,41(05):471-475.
(本文编辑:李 爽)

更新日期/Last Update: 2020-01-20