[1]王 辉,鲁国涛,许 曼,等.TLR4-/- DF1细胞系感染NDV后免疫机制的初步研究[J].中国预防兽医学报,2019,(12):1244-1250.[doi:10.3969/j.issn.1008-0589.201904009]
 WANG Hui,LU Guo-tao,XU Man,et al.Construction of TLR4-/- DF1 cell line by CRISPR/Cas9 and preliminary mechanistic study on the host immune responses to Newcastle disease virus infection[J].Chinese journal of preventive veterinary medicine,2019,(12):1244-1250.[doi:10.3969/j.issn.1008-0589.201904009]
点击复制

TLR4-/- DF1细胞系感染NDV后免疫机制的初步研究()
分享到:

《中国预防兽医学报》[ISSN:1008-0589/CN:23-1417/S]

卷:
期数:
2019年12
页码:
1244-1250
栏目:
出版日期:
2020-01-25

文章信息/Info

Title:
Construction of TLR4-/- DF1 cell line by CRISPR/Cas9 and preliminary mechanistic study on the host immune responses to Newcastle disease virus infection
文章编号:
1008-0589(2019)12-1244-07
作者:
 

王 辉12鲁国涛2许 曼12曾为俊12邵玉乐12赵丽丽2陈洪岩2刘建华1*孟庆文2*

 (1. 新疆农业大学 动物医学学院,新疆 乌鲁木齐 830000;2. 中国农业科学院哈尔滨兽医研究所 兽医生物技术国家重点实验室/
黑龙江省实验动物与比较医学重点实验室,黑龙江 哈尔滨 150069)
Author(s):
 

WANG Hui12 LU Guo-tao2 XU Man12 ZENG Wei-jun12 SHAO Yu-le12 ZHAO Li-li2CHEN Hong-yan2 LIU Jian-hua1* MENG Qing-wen2*

 (1. College of Animal Medicine,Xinjiang Agricultural University, Urumqi 830000, China
2. State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China)
关键词:
TLR4CRISPR/Cas9系统DF1基因敲除NDV
Keywords:
TLR4  CRISPR/Cas9  DF1  gene knockout  Newcastle disease virus
分类号:
S858.31
DOI:
10.3969/j.issn.1008-0589.201904009
文献标志码:
A
摘要:
为初步探究鸡TLR4在抗病毒感染天然免疫中发挥的作用,本研究利用CRISPR/Cas9基因编辑技术针对鸡TLR4基因的功能域,设计、构建了CRISPR/Cas9双质粒表达系统,转染鸡DF1细胞;经流式细胞仪分选、测序及western blot鉴定筛选得到TLR4-/- DF1细胞系;利用新城疫病毒(NDV)感染TLR4-/- DF1细胞系,采用绝对荧光定量PCR检测NDV拷贝数,相对荧光定量PCR检测TLR4下游接头蛋白、细胞因子及干扰素基因的转录水平。结果显示:与野生型DF1细胞相比,NDV感染6 h、16 h和36 h的TLR4-/- DF1细胞中病毒基因拷贝数显著升高(p<0.05),16 h升高了2.95倍,感染6 h、16 h和24 h下游接头蛋白MyD88基因转录水平下降,感染16 h促炎因子IL-1β下降了48.5 % (p<0.01),IL-8下降了62.5 % (p<0.01),I型干扰素转录水平下降。以上结果表明:NDV感染诱导的天然免疫应答可能是通过MyD88途径诱导高水平促炎性因子和I型干扰素(IFN-α、IFN-β)的表达,从而抑制NDV的增殖,TLR4在NDV感染引起的天然免疫应答和疾病防控研究中具有重要意义。同时,本研究TLR4-/- DF1细胞系的建立可用于病毒引起的炎性因子风暴及天然免疫抗病毒作用的探究。
  
Abstract:
In order to explore the role of chicken TLR4 in the antiviral innate immunity, present study constructed TLR4-/- DF1 cell line by transferring a CRISPR/Cas9 double plasmid expression system targeting the functional domain of chicken TLR4 gene into avian DF1 cells. Cells were isolated by flow cytometry sorting and the knockout of TLR4 gene was validated by sequencing and western blot. Using TLR4-/- DF1 cells infected with Newcastle disease virus (NDV) as model, the replication of NDV and the transcription of TLR4 downstream adaptor proteins, cytokines and interferons were assayed by absolute fluorescent quantitative PCR and real-time PCR, respectively. Comparing with those of wide type DF1 cells, the viral copy number was increased significantly upon knockout of TLR4 gene at 6, 16, and 36 hours post infection (hpi), which was increased 2.95 times at 16 hpi (p<0.05). The transcription of TLR4 downstream protein MyD88 was decreased significantly upon knockout of TLR4 gene at 6, 16, and 24 hpi (p<0.05). The transcription of pro-inflammatory factors IL-1β was decreased 48.5% (p<0.01) and IL-8 was decreased 62.5% (p<0.01) at 16 hpi. The expression of type I interferons was also decreased significantly upon knockout of TLR4 gene (p<0.05). Overall, present study suggests that host cells may combat NDV by triggering high expression of pro-inflammatory factors and type I interferons (IFN-α and IFN-β) via MyD88-mediated pathways, and TLR4 may play an important role in this process. Besides, the TLR4-/- DF1 cell line constructed in present study can be widely used for the studies of viral-induced inflammatory storms and antiviral innate immune responses.

参考文献/References:

[1] Takeuchi O, Akira S. Pattern recognition receptors and inflammation [J]. Cell, 2010, 140(6): 805-820.
[2]Hoshino K, Takeuchi O, Kawai T, et al. Pillars Article: Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: Evidence for TLR4 as the Lpsgene product [J]. J Immunol,1999, 162: 3749-3752.
[3]Montminy S W, Khan N, Mcgrath S, et al. Virulence factors of Yersinia pestis are overcome by a strong lipopolysaccharide response [J]. Nat Immunol, 2006, 7(10): 1066-1073.
[4]Zaffaroni L, Peri F. Recent advances on Toll-like receptor 4 modulation: new therapeutic perspectives [J]. Future Med Chem,2018, 10(4): 461-476.
[5]Lagos D, Vart R J, Gratrix F, et al. Toll-like receptor 4 mediates innate immunity to Kaposi Sarcoma Herpesvirus [J]. Cell Host Microbe, 2008, 4(5): 470-483.
[6]Haddadi S, Kim D S, Jasmine H, et al. Induction of Toll-like receptor 4 signaling in avian macrophages inhibits infectious laryngotracheitis virus replication in a nitric oxide dependent way[J]. Vet Immunol Immunop, 2013, 155(4): 270-275.
[7]Qu Yu-rong, Zhan Yuan, Yang Shen, et al. Newcastle disease virus infection triggers HMGB1 release to promote the inflammatory response [J]. Virology, 2018, 525(12): 19-31.
[8]侯巍,岳华,汤承. 荧光定量RT-PCR检测雏鸡感染NDV强毒后胸腺和法氏囊中TLR2与TLR4 mRNA的表达[J]. 中国预防兽医学报,2010,32(04):254-258.
[9]Cheng Jing-hua, Sun Ying-jie, Zhang Xiao-rong, et al. Toll-like receptor 3 inhibits Newcastle disease virus replication through activation of pro-inflammatory cytokines and the type-1 interferon pathway [J]. Arch Virol, 2014, 159(11): 2937-2948.
[10]Ma Yuan-wu, Zhang Lian-feng, Huang Xing-xu. Genome modification by CRISPR/Cas9 [J]. Febs J, 2014, 281(23): 5186- 5193.
[11]Gebre M, Nomburg J L, Gewurz B E. CRISPR-Cas9 genetic analysis of virus-host interactions [J]. Viruses, 2018, 10(2): 55.
[12]Joung J, Konermann S, Gootenberg J S, et al. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening[J]. Nat Protoc, 2017, 12(4): 828-863.
[13]Burkard C, Opriessnig T, Mileham A J, et al. Pigs lacking the scavenger receptor cysteine-rich domain 5 of CD163 are resistant to PRRSV-1 infection [J]. J Virol, 2018, 92(16): 15-18.
[14]Zhang Rong, Miner J J, Gorman M J, et al. A CRISPR screen defines a signal peptide processing pathway required by flaviviruses [J]. Nature, 2016, 535(7610): 164-168.
[15]Chiang C, Pauli E K, Biryukov J, et al. The human papillomavirus E6 oncoprotein targets USP15 and TRIM25 to suppress RIG-I-mediated innate immune signaling [J]. J Virol, 2018, 92(6): e01737-17.
[16]Keestra A M, De Zoete M R, Bouwman L I, et al. Unique features of chicken Toll-like receptors [J]. Dev Comp Immunol, 2013, 41(3): 316-323.
[17]郭全娟,韩秋菊,张建. CRISPR/Cas9技术的脱靶效应及优化策略[J]. 生物化学与生物物理进展,2018,45(08):798-807.
(本文编辑:李 爽;英文编辑:李 海)

相似文献/References:

[1]李晓云,徐 佳,李 巍,等.感染旋毛虫小鼠腹腔巨噬细胞TLR4及细胞因子的变化[J].中国预防兽医学报,2014,(10):801.[doi:10.3969/j.issn.1008-0589.2014.10.14]
 LI Xiao-yun,XU Jia,LI Wei,et al.Changes of TLR4 expression and cytokine contents in peritoneal macrophage from mouse infected with Trichinella spiralis[J].Chinese journal of preventive veterinary medicine,2014,(12):801.[doi:10.3969/j.issn.1008-0589.2014.10.14]
[2]林宝山,兰道亮,黄 偲,等.牦牛TLR2和TLR4基因mRNA在不同组织中的表达分布研究[J].中国预防兽医学报,2014,(11):901.[doi:10.3969/j.issn.1008-0589.2014.11.18]
 LIN Bao-shan,LAN Dao-liang,HUANG Cai,et al.The mRNA expressions of TLR2 and TLR4 genesin different yak tissues[J].Chinese journal of preventive veterinary medicine,2014,(12):901.[doi:10.3969/j.issn.1008-0589.2014.11.18]
[3]胡 丹,王 斌,冷有龙,等.宿主细胞erp57基因敲除抑制流感病毒复制的研究[J].中国预防兽医学报,2016,(06):429.[doi:10.3969/j.issn.1008-0429.2016.06.02]
 HU Dan,WANG Bin,LENG You-long,et al.Genetic knockout of erp57 gene in host cells inhibitsinfluenza virus replication[J].Chinese journal of preventive veterinary medicine,2016,(12):429.[doi:10.3969/j.issn.1008-0429.2016.06.02]

更新日期/Last Update: 2020-01-19