[1]刘 娇,郝小利,李秀丽,等.G1-like与F/98-like进化谱系的PB2、M基因在H5N6亚型禽流感病毒重配中的竞争优势研究 [J].中国预防兽医学报,2019,(11):1087-1094.[doi:10.3969/j.issn.1008-0589.201903015]
 LIU Jiao,HAO Xiao-li,LI Xiu-li,et al.Competitive advantage of G1-like PB2 and M genes comparing with F/98-like in the reassortment of H5N6 avian influenza viruses[J].Chinese journal of preventive veterinary medicine,2019,(11):1087-1094.[doi:10.3969/j.issn.1008-0589.201903015]
点击复制

G1-like与F/98-like进化谱系的PB2、M基因在H5N6亚型禽流感病毒重配中的竞争优势研究

 

()
分享到:

《中国预防兽医学报》[ISSN:1008-0589/CN:23-1417/S]

卷:
期数:
2019年11
页码:
1087-1094
栏目:
病原生物学
出版日期:
2019-12-25

文章信息/Info

Title:
Competitive advantage of G1-like PB2 and M genes comparing with F/98-like in the reassortment of H5N6 avian influenza viruses
文章编号:
1008-0589(2019)11-1087-07
作者:
 

刘 娇1郝小利12李秀丽1刘 东1石 磊1陈凯彪1刘开拓1王晓泉123顾 敏123*刘秀梵123

 (1. 扬州大学 农业部畜禽传染病学重点开放实验室,江苏 扬州 225009;2. 江苏高校动物重要疫病与人兽共患病防控协同
创新中心,江苏 扬州 225009;3. 江苏省人兽共患病学重点实验室,江苏 扬州 225009)
Author(s):
 

LIU Jiao1 HAO Xiao-li12 LI Xiu-li1 LIU Dong1 SHI Lei1 CHEN Kai-biao1 LIU Kai-tuo1WANG Xiao-quan123 GU Min123* LIU Xiu-fan123

 (1. Key Laboratory of Animal Infectious Diseases, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
2. Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; 3. Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou 225009, China)
关键词:
H5N6亚型禽流感H9N2内部基因竞争优势G1-likePB2和M
Keywords:
 H5N6 subtype avian influenza  H9N2 internal genes  competitive advantage  G1-like  PB2 and M
分类号:
S852.65
DOI:
10.3969/j.issn.1008-0589.201903015
文献标志码:
A
摘要:
为评价不同H9N2亚型病毒供体在H5N6亚型禽流感病毒(AIV)重配中的作用,本研究选取全套内部基因与S基因型H9N2 AIV高度同源的3株H5N6 AIV流行株MZ34、YB0597和JT131,利用反向遗传学技术在MZ34的8基因重组质粒基础上另外添加F/98-like来源的PB2和M质粒,即以MZ34(8)+F/98(PB2+M)的10质粒组合(Group 1)共转染细胞进行重组H5N6病毒的竞争性拯救;PCR扩增经3轮空斑纯化后PCR扩增拯救病毒的PB2和M基因并测序鉴定。同时,为排除来源于同一母本病毒的8质粒易于自我组合包装的可能干扰,又将MZ34的PB2和M质粒替换为YB0597或JT131来源的质粒,构成另外的2种10质粒组合Group 2: MZ34(6)+YB0597(PB2+M)+F/98(PB2+M)和Group 3: MZ34(6)+YB0597(PB2)+JT131(M)+F/98(PB2+M),经共染获得拯救病毒,对其PB2和M基因PCR扩增后测序鉴定。结果显示,从Group1、Group 2和Group 3中拯救获得的重组H5N6病毒中PB2基因的构成情况S∶H分别为41∶23、48∶15以及37∶19,M基因的构成情况S∶H分别为40∶24、31∶32以及25∶31,而PB2和M基因的组合情况SS∶SH∶HS∶HH分别为27∶14∶13∶10、26∶22∶5∶10以及17∶20∶8∶11。表明相较于H型的F/98-like PB2与M基因,S型的G1-like PB2基因在各10质粒转染组的拯救的H5N6病毒重配中具有更显著的竞争优势,而G1-like M基因仅在Group 1组拯救的重组病毒中表现出优势,但G1-like PB2与M基因间的竞争优势叠加效应不明显。本研究为解析S基因型H9N2 AIV作为H7N9、H10N8等新型重组流感病毒内部基因供体的相关机制提供重要参考。
  
Abstract:
In order to evaluate the effect of different H9N2 donors in the reassortment of H5N6 avian influenza viruses, three H5N6 circulating isolates, MZ34, YB0597 and JT131, which are highly homologous to those of H9N2 genotype S viruses in the internal genes, were selected for the following assays in the present study. Based on the reverse genetics technology, a 10-plasmid combination, including the eight plasmids derived from MZ34 and two additional plamids encoding F/98-like PB2 and M genes respectively, namely Group 1: MZ34(8)+F/98(PB2+M), was co-transfected for competitive rescue of H5N6 viruses. After three consecutive rounds of plaque purification, the rescued H5N6 viruses were used for RNA extraction. The PB2 and M genes were sequenced. Alternatively, to exclude the possible interference that the 8 gene plasmids from the same parental virus may be prone to self-packaging, we replaced the PB2 and M plasmids of MZ34 in Group 1 with those derived from YB0597 or JT131, resulted in Group 2: MZ34(6)+YB0597(PB2+M)+F/98(PB2+M) and Group 3: MZ34(6)+YB0597(PB2)+JT131(M)+F/98(PB2+M), respectively. The results showed that in Group 1, Group 2 and Group 3, the composition ratios of genotype S to genotype H (S:H) were 41∶23, 48∶15 and 37∶19 for PB2 gene, and 40∶24, 31∶32 and 25∶31 for M gene, respectively. In addition, the ratios for the combined pattern of PB2 and M genes (SS∶SH∶HS∶HH) were 27∶14∶13∶10, 26∶22∶5∶10 and 17∶20∶8∶11, respectively. Therefore, we inferred that comparing with the F/98-like PB2 and M genes of genotype H, the G1-like PB2 of genotype S had significant competitive advantage over that of F/98-like PB2 in the production of H5N6 reassortants. However, the G1-like M gene exhibited an advantage only in the MZ34(8)+F/98(PB2+M) group, and the superposition effect between PB2 and M genes was not obvious. Our study may provide an important reference for analysis of H9N2 genotype S virusesas donors of internal genes of novel influenza reassortants like the H7N9 and H10N8 viruses.

参考文献/References:

[1] Noda T, Sagara H, Yen A, et al. Architecture of ribonucleoprotein complexes ininfluenza A virus particles [J]. Nature, 2006, 439(7075): 490-492.
[2]Bi Yu-hai, Chen Quan-jiao, Wang Qian-li, et al. Genesis, evolution and prevalence of H5N6 avian influenza viruses in China [J]. Cell Host Microbe, 2016, 20(6): 810-821.
[3]Su Shuo, Bi Yu-hai, Wong Gary, et al. Epidemiology, evolution, and recent outbreaks of avian influenza virus in China [J]. J Virol, 2015, 89(17): 8671-8676.
[4]Gu Min, Chen Hong-zhi, Li Qun-hui, et al. Enzootic genotype S of H9N2 avian influenza viruses donates internal genes to emerging zoonotic influenza viruses in China [J]. Vet Microbiol, 2014, 174(3-4): 309-315.
[5]顾敏,彭大新,刘秀梵. 我国H9N2亚型禽流感病毒的流行和进化特点[J]. 生命科学,2015,27(5):531-538.
[6]Shen Yong-li, Ke Chang-wen, Li Qian, et al. Novel reassortment avian influenza A(H5N6) virus in humans, guangdong,China, 2015 [J]. Emerg Infect Dis, 2016, 22(8): 1507-1509.
[7]Zhang Zhi-jie, Li Rui, Jiang Lu-fang, et al. The complexity of human infected AIV H5N6 isolated from China [J]. BMC Infect Dis, 2016, 16(1): 600.
[8]Chen Liang-jun, Lin Xian-dan, Tian Jun-hua, et al. Diversity, evolution and population dynamics of avian influenza viruses circulating in the live poultry markets in China [J]. Virology, 2017, 505(05): 33-41.
[9]Hao Xiao-li, Wang Jiong-jiong, Hu-Jiao, et al. Internal gene cassette from a genotype S H9N2 avian influenza virus attenuates the pathogenicity of H5 viruses in chickens and mice [J]. Front Microbiol, 2017, 8: 1978.
[10]Pu Juan, Sun Hong-lei, Qu Yi, et al. M gene reassortment in H9N2 influenza virus promotes early infection and replication: contribution to rising virus prevalence in chickens in China [J]. J Virol, 2017, 91(8): e02055-16.
[11]Pu Juan, Wang Shuo-guo, Yin Yan-bo, et al. Evolution of the H9N2 influenza genotype that facilitated the genesis of the novel H7N9 virus [J]. Proc Natl AcadSci USA, 2015, 112(2): 548- 553.
[12]Liu Kai-tuo, Gu Min, Hu Shun-lin, et al. Genetic and biological characterization of three poultry-origin H5N6 avian influenza viruses with all internal genes from genotype S H9N2 viruses [J]. Arch Virol, 2018, 163(4): 947-960.
[13]Zhong Lei, Wang Xiao-quan, Li Qun-hui, et al. Molecular mechanism of the airborne transmissibility of H9N2 avian influenza A viruses in chickens [J]. J Virol, 2014, 88(17): 9568- 9578.
[14]Hoffmann E, Stech J, Guan Y, et al. Universal primer set for the full-length amplification of all influenza A viruses [J]. Arch Virol, 2001, 146(12): 2275-89.
[15]Gu Min, Xu Li-jun, Wang Xiao-quan, et al. Current situation of H9N2 subtype avian influenza in China [J]. Vet Res, 2017, 48(1): 49.
[16]Bi Yu-hai, Chen Jian-jun, Zhang Zhen-jie, et al. Highly pathogenic avian influenza H5N1 Clade 2.3.2.1c virus in migratory birds, 2014-2015 [J]. Virol Sin, 2016, 31(4): 300-305.
[17]Sun Yi-peng, Liu Jin-hua. H9N2 influenza virus in China: a cause of concern [J]. Protein Cell, 2015, 6(1): 18-25.
[18]Shi Wei-feng, Li Wei, Li Xian-bin, et al. Phylogenetics of varied subtypes of avian influenza viruses in China: potential threat to humans [J]. Protein Cell, 2014, 5(4): 253-257.
[19]Zhang Heng, Liu Ming-bin, Zeng Xiao-xu, et al. Identification of a novel reassortant A (H9N6) virus in live poultry markets in Poyang Lake region, China [J]. Arch Virol, 2017, 162(12): 3681-3690.
                            (本文编辑:彭永刚;英文编辑:钟功勋)

更新日期/Last Update: 2019-12-09