[1]岑 雪?,丁雪燕?,娄昆鹏,等.细菌分泌系统研究进展[J].中国预防兽医学报,2019,(03):317-322.[doi:10.3969/j.issn.1008-0589.201802011]
 [J].Chinese journal of preventive veterinary medicine,2019,(03):317-322.[doi:10.3969/j.issn.1008-0589.201802011]
点击复制

细菌分泌系统研究进展()
分享到:

《中国预防兽医学报》[ISSN:1008-0589/CN:23-1417/S]

卷:
期数:
2019年03
页码:
317-322
栏目:
综述
出版日期:
2019-04-25

文章信息/Info

文章编号:
1008-0589(2019)03-0317-06
作者:
 

岑 雪12?丁雪燕12?娄昆鹏12朱国强12*

 (1. 扬州大学 兽医学院,江苏 扬州 225009;2. 江苏省动物重要疫病与人兽共患病防控协同创新中心,江苏 扬州 225009)

  

分类号:
S852.61
DOI:
10.3969/j.issn.1008-0589.201802011
文献标志码:
B

参考文献/References:

[1]Dautin N, Bernstein H D. Protein secretion in gram-negative bacteria via the autotransporter pathway [J]. Annu Rev Microbiol, 2007, 61(1): 89-112.
[2]Abdallah A M, van Pittius N C, Champion P A, et al. Type VII secretion - Mycobacteria show the way [J]. Nat Rev Microbiol, 2007, 5(11): 883-891.
[3]Goebel W, Hedgpeth J. Cloning and functional characterization of the plasmid-encoded hemolysin determinant of Escherichia coli [J]. J Bacteriol, 1982, 151(3): 1290-1298.
[4]Morgan J L W, Acheson J F, Zimmer J. Structure of a Type-1 secretion system ABC transporter [J]. Structure, 2017, 25(3): 522-529.
[5]Thomas S, Holland I B, Schmitt L. The Type 1 secretion pathway - The hemolysin system and beyond [J]. Biochim Biophys Acta, 2014, 1843(8): 1629-1641.
[6]Gerlach R G, J?覿ckel D, Stecher B, et al. Salmonella pathogenicity island 4 encodes a giant non-fimbrial adhesin and the cognate type 1 secretion system [J]. Cell Microbiol, 2007, 9(7): 1834-1850.
[7]Yoshida K, Toyofuku M, Obana N, et al. Biofilm formation by Paracoccus denitrificans requires a type I secretion system-dependent adhesin BapA [J]. FEMS Microbiol Lett, 2017, 364(4), doi: 10.1093.
[8]Harding C M, Pulido M R, Di V G, et al. Pathogenic acinetobacter species have a functional Type I secretion system and contact-dependent inhibition systems [J]. J Bio Chem, 2017, 292(22): 9075-9087.
[9]Lesic B, Starkey M, He J, et al. Quorum sensing differentially regulates Pseudomonas aeruginosa type VI secretion locus I and homologous loci II and III, which are required for pathogenesis [J]. Microbiology, 2009, 155(9): 2845-2855.
[10]Ferrandez Y, Condemine G. Novel mechanism of outer membrane targeting of proteins in Gram-negative bacteria [J]. Mol Microbiol, 2008, 69(6): 1349-1357.
[11]Pugsley A P. The complete general secretory pathway in gram- negative bacteria [J]. Microbiol Rev, 1993, 57(1): 50-108.
[12]Voulhoux R, Ball G, Ize B, et al. Involvement of the twin-arginine translocation system in protein secretion via the type II pathway [J]. EMBO J, 2001, 20(23): 6735-6741.
[13]Pugsley A P, Possot O S N, Hardie K R, et al. Recent progress and future directions in studies of the main terminal branch of the general secretory pathway in gram-negative bacteria - a review [J]. Gene, 1997, 192(1): 13-19.
[14]Lory S. Secretion of proteins and assembly of bacterial surface organelles: Shared pathways of extracellular protein targeting [J]. Curr Opin Microbiol, 1998, 1(1): 27-35.
[15]Francetic O, Belin D, Badaut C, et al. Expression of the endogenous type II secretion pathway in Escherichia coli leads to chitinase secretion [J]. EMBO J, 2000, 19(24): 6697-6703.
[16]Corbett M, Virtue S, Bell K, et al. Identification of a new quorum-sensing-controlled virulence factor in Erwinia carotovora subsp. atroseptica secreted via the type II targeting pathway [J]. Mol Plant Microbe Interact, 2005, 18(4): 334-342.
[17]Ray S K, Rajeshwari R, Sonti R V. Mutants of Xanthomonas oryzae pv. oryzae deficient in general secretory pathway are virulence deficient and unable to secrete xylanase [J]. Mol Plant Microbe Interact, 2000, 13(4): 394-401.
[18]Kubori T, Matsushima Y, Dai N, et al. Supramolecular structure of the Salmonella typhimurium Type III protein secretion system [J]. Science, 1998, 280(5363): 602-605.
[19]Coburn B, Sekirov I, Finlay B B. Type III secretion systems and disease [J]. Clin Microbiol Rev, 2007, 20(4): 535-549.
[20]Van Gijsegem F, Gough C, Zischek C, et al. The hrp gene locus of Pseudomonas solanacearum, which controls the production of a type III secretion system, encodes eight proteins related to components of the bacterial flagellar biogenesis complex [J]. Mol Microbiol, 1995, 15(6): 1095-1114.
[21]Gaytán M O, Martínez-Santos V I, Soto E, et al. Type three secretion system in attaching and effacing pathogens [J]. Front Cell Infect Microbiol, 2016, 6(21): 129.
[22]Bliska J B, Wang X, Viboud G I, et al. Modulation of innate immune responses by Yersinia type III secretion system translocators and effectors [J]. Cell Microbiol, 2013, 15(10): 1622- 1631.
[23]Silva-Herzog E, Detweiler C S. Salmonella enterica replication in hemophagocytic macrophages requires two type three secretion systems [J]. Infect Immun, 2010, 78(8): 3369-3377.
[24]Song M, Sukovich D J, Ciccarelli L, et al. Control of type III protein secretion using a minimal genetic system [J]. Nat Commun, 2017, 8: 14737.
[25]Wille T, Blank K, Schmidt C, et al. Gaussia princeps luciferase as a reporter for transcriptional activity, protein secretion, and protein-protein interactions in Salmonella enterica serovar typhimurium [J]. Appl Environ Microbiol, 2012, 78(1): 250-257.
[26]Grohmann E, Christie P J, Waksman G, et al. Type IV secretion in Gram negative and Gram positive bacteria [J]. Mol Microbiol, 2018, 107(4): 455-471.
[27]Aguilar J, Zupan J, Cameron T A, et al. Agrobacterium type IV secretion system and its substrates form helical arrays around the circumference of virulence-induced cells [J]. Proc Natl Acad Sci USA, 2010, 107(8): 3758-3763.
[28]Gomisrüth F X, Solà M, De I C F, et al. Coupling factors in macromolecular type-IV secretion machineries [J]. Curr Pharm Des, 2004, 10(13): 1551-1565.
[29]Naroeni A, Jouy N, Ouahrani-Bettache S, et al. Brucella suis- impaired specific recognition of phagosomes by lysosomes due to phagosomal membrane modifications [J]. Infect Immun, 2001, 69(1): 486-493.
[30]Niu H, Kozjak-Pavlovic V, Rudel T, et al. Anaplasma phagocytophilum Ats-1 is imported into host cell mitochondria and interferes with apoptosis induction [J]. PLoS Pathog, 2010, 6(2): e1000774.
[31]Hsu F, Zhu W, Brennan L, et al. Structural basis for substrate recognition by a unique Legionella phosphoinositide phosphatase [J]. Proc Natl Acad Sci USA, 2012, 109(34): 13567-13572.
[32]Barrozo R M, Cooke C L, Hansen L M, et al. Functional plasticity in the type IV secretion system of Helicobacter pylori [J]. PLoS Pathog, 2013, 9(2): e1003189.
[33]Ghosal D, Chang Y W, Jeong K C, et al. In situ structure of the Legionella Dot/Icm type IV secretion system by electron cryotomography [J]. EMBO Rep, 2017, 18(5): 726-732.
[34]Souza D P, Oka G U, Alvarez-Martinez C E, et al. Bacterial killing via a type IV secretion system [J]. Nat Commun, 2015, 6: 6453.
[35]Gonzálezprieto C, Gabriel R, Dehio C, et al. The conjugative relaxase TrwC promotes integration of foreign DNA in the human genome [J]. Appl Environ Microbiol, 2017, 83(12): e00207-17.
[36]Henderson I R, Navarrogarcia F, Desvaux M, et al. Type V protein secretion pathway: The autotransporter story [J]. Microbiol Molecular Biol Rev, 2004, 68(4): 692-744.
[37]Gawarzewski I, Smits S H, Schmitt L, et al. Structural comparison of the transport units of type V secretion systems [J]. Biol Chem, 2013, 394(11): 1385-1398.
[38]Desvaux M, Parham N J, Henderson I R. Type V protein secretion: simplicity gone awry [J]. Curr Issues Mol Biol, 2004, 6(2): 111-124.
[39]Salacha R, Kovacic F, Brochierarmanet C, et al. The Pseudomonas aeruginosa patatin-like protein PlpD is the archetype of a novel type V secretion system [J]. Environ Microbiol, 2010, 12(6): 1498-1512.
[40]Tsai J C, Yen M R, Castillo R, et al. The bacterial intimins and invasins: a large and novel family of secreted proteins [J]. PLoS One, 2010, 5(12): e14403.
[41]Albenne C, Ieva R. Job contenders: roles of the β barrel assembly machinery and the translocation and assembly module in autotransporter secretion [J]. Mol Microbiol, 2017, 106(4): 505- 517.
[42]Knowles T J, Scotttucker A, Overduin M, et al. Membrane protein architects: The role of the BAM complex in outer membrane protein assembly [J]. Nat Rev Microbiol, 2009, 7(3): 206-214.
[43]Fan E, Chauhan N, Udatha D B, et al. Type V secretion systems in bacteria [J]. Microbiol Spectr, 2016, 4(1), doi: 10.1128.
[44]Pukatzki S, Ma A T, Sturtevant D, et al. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system [J]. Proc Natl Acad Sci USA, 2006, 103(5): 1528-1533.
[45]Silverman J M, Brunet Y R. Cascales E, et al. Structure and regulation of the type VI secretion system [J]. Annu Rev Microbiol, 2012, 66: 453-472.
[46]Basler M, Pilhofer M, Henderson P G, et al. Type VI secretion requires a dynamic contractile phage tail-like structure [J]. Nature, 2012, 483(7388): 182-186.
[47]Weber B, Hasic M, Chen C, et al. Type VI secretion modulates quorum sensing and stress response in Vibrio anguillarum [J]. Environ Microbiol, 2009, 11(12): 3018-3028.
[48]Jani A J, Cotter P A. Type VI secretion: Not just for pathogenesis anymore [J]. Cell Host  Microbe, 2010, 8(1): 2-6.
[49]Warne B, Harkins C P, Harris S R. et al. The Ess/Type VII secretion system of Staphylococcus aureus shows unexpected genetic diversity [J]. BMC Genomics, 2016, 17(1): 222.
[50]Simeone R, Bobard A, Lippmann J, et al. Phagosomal rupture by Mycobacterium tuberculosis results in toxicity and host cell death [J]. PLoS Pathog , 2012, 8(2): e1002507.
[51]Bhat K H, Das A, Srikantam A, et al. PPE2 protein of Mycobacterium tuberculosis may inhibit nitric oxide in activated macrophages [J]. Ann New Y Acad Sci, 2013, 1283(1): 97-101.
[52]Mielichsüss B, Wagner R M, Mietrach N, et al. Flotillin scaffold activity contributes to type VII secretion system assembly in Staphylococcus aureus [J]. PLoS Pathog, 2017, 13(11): e1006728.
[53]Guo Yun-qing, Di Hu, Guo Jie, et al. Riemerella anatipestifer Type IX secretion system is required for virulence and gelatinase secretion [J]. Front Microbiol, 2017, 8: 2553.
[54]Nenninger A A, Robinson L S, Hultgren S J. Localized and efficient curli nucleation requires the chaperone-like amyloid assembly protein CsgF [J]. Proc Natl Acad Sci USA, 2009, 106(3): 900-905.
[55]Loferer H, Hammar M, Normark S. Availability of the fibre subunit CsgA and the nucleator protein CsgB during assembly of fibronectin-binding curli is limited by the intracellular concentra tion of the novel lipoprotein CsgG [J]. Mol Microbiol, 1997, 26(1): 11-23.
[56]Bian Z, Normark S. Nucleator function of CsgB for the assembly of adhesive surface organelles in Escherichia coli [J]. Embo J, 1997, 16(19): 5827-5836.
[57]Biesecker S G, Nicastro L K, Wilson R P, et al. The functional amyloid curli protects Escherichia coli against complement-mediated bactericidal activity [J]. Biomolecules, 2018, 8(1): E5.
[58]Hu Lan. Prevalence of curli genes among Cronobacter species and their roles in biofilm formation and cell-cell aggregation [J]. Int J Food Microbiol, 2018, 265: 65-73.
[59]Jain N, ?魡dén J, Nagamatsu K, et al. Inhibition of curli assembly and Escherichia coli biofilm formation by the human systemic amyloid precursor transthyretin [J]. Proc Natl Acad Sci USA, 2017, 114(46): 12184-12189.
[60]Heath J E, Seers C A, Veith P D, et al. PG1058 is a novel multidomain protein component of the bacterial Type IX secretion system [J]. PLoS One, 2016, 11(10): e0164313.
[61]Taguchi Y, Sato K, Yukitake H, et al. Involvement of an Skp-Like Protein, PGN_0300, in the Type IX secretion system of porphyromonas gingivalis [J]. Infect Immun, 2015, 84(1): 230.
[62]Mcbride M J, Nakane D. Flavobacterium gliding motility and the type IX secretion system [J]. Curr Opin Microbiol, 2015, 28: 72-77.
(本文编辑:李 爽)

更新日期/Last Update: 2019-04-26