[1]向广韬,吴红霞,仇华吉*,等. α疱疹病毒潜伏感染研究进展[J].中国预防兽医学报,2018,(10):965-970.[doi:10.3969/j.issn.1008-0589.201708024]
点击复制

 

α疱疹病毒潜伏感染研究进展

()
分享到:

《中国预防兽医学报》[ISSN:1008-0589/CN:23-1417/S]

卷:
期数:
2018年10
页码:
965-970
栏目:
综述
出版日期:
2018-11-15

文章信息/Info

文章编号:
1008-0589(2018)10-0965-06
作者:
 

向广韬吴红霞仇华吉*孙 元*

 

(中国农业科学院哈尔滨兽医研究所 兽医生物技术国家重点实验室,黑龙江 哈尔滨 150069)

分类号:
S852.65
DOI:
10.3969/j.issn.1008-0589.201708024
文献标志码:
B

参考文献/References:

 

[1]Bloom D C. Alphaherpesvirus latency: A dynamic state of transcription and reactivation [J]. Adv Virus Res, 2016, 94: 53-80.

[2]Pomeranz L E, Reynolds A E, Hengartner C J. Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine [J]. Microbiol Mol Biol Rev, 2005, 69(3): 462-500.

[3]Roizman B, Whitley R J. An inquiry into the molecular basis of HSV latency and reactivation [J]. Annu Rev Microbiol, 2013, 67: 355-374.

[4]Brown J C. Herpes Simplex Virus Latency: The DNA repair- centered pathway [J]. Adv Virol, 2017, 2017: 7028194.

[5]Kennedy P G, Rovnak J, Badani H, et al. A comparison of herpes simplex virus type 1 and varicella-zoster virus latency and reactivation [J]. J Gen Virol, 2015, 96(Pt 7): 1581-1602.

[6]Koyuncu O O, Hogue I B, Enquist L W. Virus infections in the nervous system [J]. Cell Host Microbe, 2013, 13(4): 379-393.

[7]De Regge N, Van Opdenbosch N, Nauwynck H J, et al. Interferon alpha induces establishment of alphaherpesvirus latency in sensory neurons in vitro [J]. PLoS One, 2010, 5(9): e13076.

[8]Mott K R, Allen S J, Zandian M, et al. Coregulatory interactions among CD8α dendritic cells, the latency-associated transcript, and programmed death 1 contribute to higher levels of herpes simplex virus 1 latency [J]. J Virol, 2014, 88(12): 6599-6610.

[9]Menendez C M, Jinkins J K, Carr D J. Resident T cells are unable to control herpes simplex virus-1 activity in the brain ependymal region during latency [J]. J Immunol, 2016, 197(4): 1262-1275.

[10]Raja P, Lee J S, Pan Dong-li, et al. A herpesviral lytic protein regulates the structure of latent viral chromatin [J]. MBio, 2016, 7(3). pii: e00633-16.

[11]Russell T A, Tscharke D C. Lytic promoters express protein during herpes Simplex Virus Latency [J]. PLoS Pathog, 2016, 12(6): e1005729.

[12]BenMohamed L, Osorio N, Srivastava R, et al. Decreased reactivation of a herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) mutant using the in vivo mouse UV-B model of induced reactivation [J]. J Neurovirol, 2015, 21(5): 508-517.

[13]Pires de Mello C P, Bloom D C, Paix?觔o I C. Herpes simplex virus type-1: replication, latency, reactivation and its antiviral targets [J]. Antivir Ther, 2016, 21(4): 277-286.

[14]Sawtell N M. Comprehensive quantification of herpes simplex virus latency at the single-cell level [J]. J Virol, 1997, 71(7): 5423-5431.

[15]Proenca J T, Nelson D, Nicoll M P, et al. Analyses of herpes simplex virus type 1 latency and reactivation at the single cell level using fluorescent reporter mice [J]. J Gen Virol, 2016, 97(3): 767-777.

[16]Taharaguchi S, Yoshino S, Amagai K, et al. The latency-associated transcript promoter of pseudorabies virus directs neuron-specific expression in trigeminal ganglia of transgenic mice [J]. J Gen Virol, 2003, 84(8): 2015-2022.

[17]Carpenter D, Hsiang C, Jiang Xian-zhi, et al. The herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) protects cells against cold-shock-induced apoptosis by maintaining phosphorylation of protein kinase B (AKT) [J]. J Neurovirol, 2015, 21(5): 568-575.

[18]Nicoll M P, Hann W, Shivkumar M, et al. The HSV-1 latency-associated transcript functions to repress latent phase lytic gene expression and suppress virus reactivation from latently infected neurons [J]. PLoS Pathog, 2016, 12(4): e1005539.

[19]Jiang Xian-zhi, Brown D, Osorio N, et al. Increased neurovirulence and reactivation of the herpes simplex virus type 1 latency-associated transcript (LAT)-negative mutant dLAT2903 with a disrupted LAT miR-H2 [J]. J Neurovirol, 2016, 22(1): 38-49.

[20]Lieberman P M. Epigenetics and genetics of viral latency [J]. Cell Host Microbe, 2016, 19(5): 619-628.

[21]Cliffe A R, Wilson A C. Restarting lytic gene transcription at the onset of herpes simplex virus reactivation [J]. J Virol, 2017, 91(2). pii: e01419-16.

[22]Kristie T M. Dynamic modulation of HSV chromatin drives initiation of infection and provides targets for epigenetic therapies [J]. Virology, 2015, 479-480: 555-561.

[23]Cliffe A R, Arbuckle J H, Vogel J L, et al. Neuronal stress pathway mediating a histone methyl/phospho switch is required for herpes simplex virus reactivation [J]. Cell Host Microbe, 2015, 18(6): 649-658.

[24]Hafezi W, Lorentzen E U, Eing B R, et al. Entry of herpes simplex virus type 1 (HSV-1) into the distal axons of trigeminal neurons favors the onset of nonproductive, silent infection [J]. PLoS Pathog, 2012, 8(5): e1002679.

[25]Sawtell N M, Thompson R L. De novo herpes simplex virus VP16 expression gates a dynamic programmatic transition and sets the latent/lytic balance during acute infection in trigeminal ganglia [J]. PLoS Pathog, 2016, 12(9): e1005877.

[26]Grey F. Role of microRNAs in herpesvirus latency and persistence [J]. J Gen Virol, 2015, 96(Pt 4): 739-751.

[27]Engel E A, Song Ren, Koyuncu O O, et al. Investigating the biology of alpha herpesviruses with MS-based proteomics [J]. Proteomics, 2015, 15(12): 1943-1956.

[28]Pan Dong-li, Flores O, Umbach J L, et al. A neuron-specific host microRNA targets herpes simplex virus-1 ICP0 expression and promotes latency [J]. Cell Host Microbe, 2014, 15(4): 446-456.

[29]Umbach J L, Kramer M F, et al. MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs [J]. Nature, 2008, 454(7205): 780-783.

[30]Pan Dong-li, Pesola J M, Li G, et al. Mutations inactivating herpes simplex virus 1 MicroRNA miR-H2 do not detectably increase ICP0 gene expression in infected cultured cells or mouse trigeminal ganglia [J]. J Virol, 2017, 91(2). pii: e02001-2016.

[31]Wang Zi-qiang, Fan Ping, Zhao Yi-wan, et al. NEAT1 modulates herpes simplex virus-1 replication by regulating viral gene transcription [J]. Cell Mol Life Sci, 2017, 74(6): 1117-1131.

[32]Shu Min-feng, Du Te, Zhou G, et al. Role of activating transcription factor 3 in the synthesis of latency-associated transcript and maintenance of herpes simplex virus 1 in latent state in ganglia [J]. Proc Natl Acad Sci USA, 2015, 112(39): E5420-5426.

[33]Sandgren K J, Bertram K, Cunningham A L. Understanding natural herpes simplex virus immunity to inform next-generation vaccine design [J]. Clin Transl Immunol, 2016, 5(7): e94.

[34]Katzenell S, Leib D A. Herpes simplex virus and interferon signaling induce novel autophagic clusters in sensory neurons [J]. J Virol, 2016, 90(9): 4706-4719.

[35]Knickelbein J E, Khanna K M, Yee M B, et al. Noncytotoxic lytic granule-mediated CD8+ T cell inhibition of HSV-1 reactivation from neuronal latency [J]. Science, 2008, 322(5899): 268-271.

[36]Khan A A, Srivastava R, Chentoufi A A, et al. Bolstering the number and function of HSV-1-specific CD8+ effector memory T cells and tissue-resident memory T cells in latently infected trigeminal ganglia reduces recurrent ocular herpes infection and disease [J]. J Immunol, 2017, 199(1): 186-203.

[37]Srivastava R, Khan A A, Chilukuri S, et al. CXCL10/CXCR3- dependent mobilization of herpes simplex virus-specific CD8+ TEM and CD8+ TRM cells within infected tissues allows efficient protection against recurrent herpesvirus infection and disease [J]. J Virol, 2017, 91(14). pii: e00278-17.

[38]Srivastava R, Dervillez X, Khan A A, et al. The herpes simplex virus latency-associated transcript gene is associated with a broader repertoire of virus-specific exhausted CD8+ T cells retained within the trigeminal ganglia of latently infected HLA transgenic rabbits [J]. J Virol, 2016, 90(8): 3913-3928.

[39]Jones C. Bovine herpes virus 1 (BHV-1) and herpes simplex virus type 1 (HSV-1) promote survival of latently infected sensory neurons, in part by inhibiting apoptosis [J]. J Cell Death, 2013, 6: 1-16.

[40]Shen Wen-wen, Sa e S M, Jaber T, et al. Two small RNAs encoded within the first 1.5 kilobases of the herpes simplex virus type 1 latency-associated transcript can inhibit productive infection and cooperate to inhibit apoptosis [J]. J Virol, 2009, 83(18): 9131-9139.

[41]Carpenter D, Henderson G, Hsiang C, et al. Introducing point mutations into the ATGs of the putative open reading frames of the HSV-1 gene encoding the latency associated transcript (LAT) reduces its anti-apoptosis activity [J]. Microb Pathog, 2008, 44(2): 98-102.

[42]Perng G C, Jones C, Ciacci-Zanella J, et al. Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript [J]. Science, 2000, 287(5457): 1500-1503.

[43]da Silva L F, Jones C. Small non-coding RNAs encoded within the herpes simplex virus type 1 latency associated transcript (LAT) cooperate with the retinoic acid inducible gene I (RIG-I) to induce beta-interferon promoter activity and promote cell survival [J]. Virus Res, 2013, 175(2): 101-109.

[44]You yu, Cheng an-chun, Wang ming-shu, et al. The suppression of apoptosis by α-herpesvirus [J]. Cell Death Dis, 2017, 8(4): e2749.

(本文编辑:李 娜)

更新日期/Last Update: 2018-11-28