[1]韩亚儒,杜 承,王晓钧*.慢病毒与microRNA研究进展[J].中国预防兽医学报,2018,(09):862-867.[doi:0.3969/j.issn.1008-0589.201707033]
 [J].Chinese journal of preventive veterinary medicine,2018,(09):862-867.[doi:0.3969/j.issn.1008-0589.201707033]
点击复制

慢病毒与microRNA研究进展()
分享到:

《中国预防兽医学报》[ISSN:1008-0589/CN:23-1417/S]

卷:
期数:
2018年09
页码:
862-867
栏目:
综述
出版日期:
2018-09-17

文章信息/Info

文章编号:
1008-0589(2018)9-0862-06
作者:
 

韩亚儒12杜 承2王晓钧2*

 (1. 内蒙古农业大学 兽医学院,内蒙古 呼和浩特 010018;
2. 中国农业科学院哈尔滨兽医研究所 兽医生物技术国家重点实验室,黑龙江 哈尔滨 150069)

 

分类号:
S852.65
DOI:
0.3969/j.issn.1008-0589.201707033
文献标志码:
B

参考文献/References:


[1]Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 [J]. Cell, 1993, 75(5): 843-854.
[2]Reinhart B J, Slack F J, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans [J]. Nature, 2000, 403(6772): 901-906.
[3]Taganov K D, Boldin M P, Chang K J, et al. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses [J]. Proc Natl Acad Sci USA, 2006, 103(33): 12481-12486.
[4]Calabrese J M, Seila A C, Yeo G W, et al. RNA sequence analysis defines Dicer’s role in mouse embryonic stem cells [J]. Proc Natl Acid Sci USA, 2007, 104(46): 18097-18102.
[5]Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA ploymer-ase II [J]. EMBO J, 2004, 23(20): 4051-4060.
[6]Lund, E, Guttinger S, Calddo A, et al. Nuclear export of                              microRNA precursors [J]. Science, 2004, 303(5654): 95-98.
[7]Khvorova A, Reynolds A, Jayasena S D. Functional siRNAs and miRNAs exhibit strand bias [J]. Cell, 2003, 115(2): 209-216.
[8]Lewis B P, Burge C B, Bartel D P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets [J]. Cell, 2005, 120(1): 15-20.
[9]Bartel D P. MicroRNAs: target recognition and regulatory functions [J]. Cell, 2009, 136(2): 215-233.
[10]Pfeffer S, Zavolan M, Grasser F A, et al. Identification of virus-encoded microRNAs [J]. Science, 2004, 304(5671): 734- 736.
[11]Ghosh Z, Malick B, Chakrabarti J. Cellular versus viral microRNA in host-virus interaction [J]. Nucleic Acids Res, 2009, 37(4): 1035-1048.
[12]Griffiths-Jones S, Saini H K, van Dongen S, et al. miRBase: tools for microRNA genomics [J]. Nucleic Acids Res, 2008, 36(Database issue): D154-158.
[13]Gupta A, Gartner J J, Sethupathy P, et al. Anti-apoptotic function of a microRNA encoded by the HSV-1 latency-associated transcript [J]. Nature, 2006, 442(7098): 82-85.
[14]Seo G J, Fink L H, O’Hara B, et al. Evolutionarily conserved function of a viral microRNA [J]. J Virol, 2008, 82(20): 9823-9328.
[15]Grey F, Antoniewicz A, Allen E, et al. Identification and characterization of human cytomegalovirus-encoded microRNAs [J]. J Virol, 2005, 79(18): 12095-12099.
[16]Dolken L, Perot J, Cognat V, et al. Mouse cytomegalovirus microRNAs dominate the cellular small RNA profile during lytic infection and show features of posttranscriptional regulation [J]. J Virol, 2007, 81(24): 13771-13782.
[17]Yao Yong-xiu, Zhao Yu-guang, Xu Hong-tao, et al. Marek’s disease virus type 2 (MDV-2)-encoded microRNAs show no sequence conservation with those encoded by MDV-1 [J]. J Virol, 2007, 81(13): 7164-7170.
[18]Sullivan C S, Grundhoff A T, Tevethia S, et al. SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells [J]. Nature, 2005, 435: 682-686.
[19]Ghosh Z, Mallick B, Chakrabarti J. Cellular versus viral microRNAs in host-virus interaction [J]. Nucleic Acids Res, 2009, 37(4): 1035-1048.
[20]Yelamanchili S V, Chaudhuri A D, Chen L N, et al. MicroRNA-21 dysregulates the expression of MEF2C in neurons in monkey and human SIV/HIV neurological disease [J]. Cell Death Dis, 2010, 1: e77.
[21]Witwer K W, Sarbanes S L, Liu J, et al. A plasma microRNA signature of acute  lentiviral infection: biomarkers of central nervous system disease [J]. AIDS, 2011, 25(17): 2057-2067.
[22]Sisk J M, Witwer K W, Tarwater P M, et al. SIV replication is directly downregulated by four antiviral miRNAs [J]. Retrovirology, 2013, 10(1): 95.
[23]Mohan M, Chandra L C, Torben W, et al. miR-190b is markedly upregulated in the intestine in response to simian immunodeficiency virus replication and partly regulates myotubularin-related protein-6 expression [J]. J Immunol, 2014, 193(3): 1301-1313.
[24]Fulcher J A, Koukos G, Koutsioumpa M, et al. Unique microRNA expression in the colonic mucosa during chronic HIV-1 Infection [J]. AIDS, 2017, 11: 23.
[25]Rahimian P, He J J. HIV-1 Tat-shortened neurite outgrowth through regulation of microRNA-132 and its target gene expression [J]. J Neuroinflammation, 2016, 13(1): 247.
[26]Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases [J]. Immunol, 1995, 155: 1151-1164.
[27]Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3 [J]. Science, 2003, 299: 1057-1061.
[28]Wang yan, Mukta Nag, Joanne L, et al. Micro-RNA 10a is increased in feline T regulatory cells and increases foxp3 protein expression following in vitro transfection [J]. Vet, Sci, 2017, 4(1): 12.
[29]Wakiyama M, Kaitsu Y, Muramatsu R, et al. Tethering of proteins to RNAs using the bovine immunodeficiency virus-Tat peptide and BIV-TAR RNA [J]. Anal Biochem, 2012, 427(2): 130-132.
[30]Ahluwalia J K, Khan S Z, Soni K, et al. Human cellular mi-croRNA has-miR-29a interferes with viral nef protein expression and HIV-1 replication [J]. Retrovirology, 2008, 5(1): 117.
[31]Houzet L, Klase Z, Yeung M, et al. The extent of sequence complementarity correlates with the potency of cellular miRNA-mediated restriction of HIV-1 [J]. Nucleic Acids Res, 2012, 40(22): 11684-11696.
[32]Huang Jia-ling, Wang Feng-xiang, Argyris E, et al. Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes [J]. Nat Med, 2007, 13(10): 1241-1247.
[33]Rice A P, Herrmann H. Regulation of TAK/PTEFb in CD4+ T lymphocytes and macrophages [J]. Curr HIV Res, 2003, 1(4): 395-404.
[34]Hariharan M, Scaria V, Pillai B, et al. Targets for human encoded microRNAs in HIV genes [J]. Biochem Biophys Res Com mun, 2005, 337(4): 1214-1218.
[35]Bennasser Y,  Le S Y,  Yeung M L, et al. HIV-1 encoded candidate micro-RNAs and their cellular targets [J]. Retrovirology, 2004, 1: 43.
[36]Couturier J P, Root-Bernstein R S. HIV may produce inhibitory microRNAs (miRNAs) that block production of CD28, CD4 and some interleukins [J]. J of Theor Biol, 2005, 235: 169-184.
[37]Klase Z, Winograd R, Davis J, et al. HIV-1 TAR miRNA protects against apoptosis by altering cellular gene expression [J]. Retrovirology, 2009, 6(1): 18.
[38]Kaul D, Ahlawat A, Gupta S. HIV-1 genome-encoded hiv1-mir-H1 impairs cellular responses to infection [J]. Mol Cell Biochem, 2009, 323(1): 143-148.
[39]Omoto S, Fujii Y R. Regulation of human immunodeficiency virus 1 transcription by nef microRNA [J]. J Virol, 2005, 86: 751-755.
[40]Omoto S, Ito M, Tsutsumi Y, et al. HIV-1 nef suppression by virally encoded microRNA [J]. Retrovirology, 2004, 1(1): 44.
[41]Yamamoto T, Omoto S, Mizuguchi M, et al. Double-stranded nef RNA interferes with human i[]mmunodeficiency virus type 1 replication [J]. Microbiol Immunol, 2002, 46: 809-817.
[42]Holland B, Wong J, Li Meng, et al. Identification of human microRNA-like sequences embedded within the protein-encoding genes of the human immunodeficiency virus [J]. PLoS One, 2013, 8: e58586.
[43]Klase Z, Kale P, Winograd R, et al. HIV-1 TAR element is processed by Dicer to yield a viral micro-RNA involved in chromatin remodeling of the viral LTR [J]. BMC Mol Biol, 2007, 8(1): 63.
[44]Zhang Yi-jun, Fan Miao-miao, Geng Guan-nan, et al. A novel HIV-1-encoded microRNA enhances its viral replication by targeting the TATA box region [J]. Retrovirology, 2014, 11(1): 23.
(本文编辑:李   娜)

更新日期/Last Update: 2018-10-19