[1]白东东,李新圃,杨 峰,等.基于网络药理学分析消黄散治疗马火热壅盛证作用机制的研究[J].中国预防兽医学报,2018,(09):842-846.[doi:0.3969/j.issn.1008-0589.201701032]
 BAI Dong-dong,LI Xin-pu,YANG Feng,et al.The mechanism of Xiaohuangsan powder in treating horses heat syndrome based on network pharmacology[J].Chinese journal of preventive veterinary medicine,2018,(09):842-846.[doi:0.3969/j.issn.1008-0589.201701032]
点击复制

基于网络药理学分析消黄散治疗马火热壅盛证作用机制的研究()
分享到:

《中国预防兽医学报》[ISSN:1008-0589/CN:23-1417/S]

卷:
期数:
2018年09
页码:
842-846
栏目:
免疫学
出版日期:
2018-09-17

文章信息/Info

Title:
The mechanism of Xiaohuangsan powder in treating horses heat syndrome based on network pharmacology
文章编号:
1008-0589(2018)9-0842-05
作者:
 

白东东1李新圃1杨 峰1罗金印1王旭荣1王 丹1张亚茹1 2李宏胜1*

 (1. 中国农业科学院 兰州畜牧与兽药研究所/农业部兽用药物创制重点实验室/甘肃省新兽药工程重点实验室,甘肃 兰州 730050;
2. 甘肃农业大学 动物医学院,甘肃 兰州 730070)
Author(s):
 

BAI Dong-dong1 LI Xin-pu1 YANG Feng1 LUO Jin-yin1 WANG Xu-rong1 WANG Dan1 ZHANG Ya-ru12 LI Hong-sheng1*

 (1. Key Laboratory of Veterinary Pharmaceutical Discovery, Ministry of Agriculture, Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou Institute of Animal Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences,
Lanzhou 730050, China; 2. College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China)
关键词:
消黄散马火热壅盛证网络药理学蛋白互作网络基因本体信号通路
分类号:
S853.74
DOI:
0.3969/j.issn.1008-0589.201701032
文献标志码:
A
摘要:
为揭示消黄散作用于马火热壅盛证活性成分、作用靶点及其基因功能以及信号通路的机制,本研究采用网络药理学方法,利用中药系统药理学分析平台检索了消黄散11 味中药的化学成分、作用靶点,进而构建化合物-靶点网络、蛋白质-蛋白质相互作用(PPI)网络、靶点-通路网络,研究消黄散的作用机制。结果筛选出78个化合物,相应作用靶点151个;PPI网络包含60个靶点,关键靶点主要涉及TP53、NCOA2、TNF、MAPK14、HSP90AB1、ESR1及VEGFA等;GO富集条目1个,分子功能1个;KEGG信号通路2条,涉及肌萎缩性脊髓侧索硬化症(ALS)通路和NOD样受体信号通路。通过对上述结果的分析,初步表明消黄散可能通过调控抑癌基因TP53、核受体共激活因子-2、肿瘤坏死因子、MAPK14蛋白等靶点,基因功能富集于类固醇绑定,ALS通路和NOD样受体信号通路以达到治疗马火热壅盛证的效果。本研究初步揭示了消黄散治疗马火热壅盛证的可能作用靶点和其作用机制,并为下一步深入探究、验证其作用机制奠定了基础。
  
Abstract:
In this study, we used the network pharmacology method to reveal the mechanism of Xiaohuangsan powder acting on horse heat syndrome with the active ingredient, target and gene function, signal pathway. Chemical components and targets related to the eleven traditional Chinese medicine (TCM) herbs were screened through the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Compound-target network, protein-protein interaction (PPI) network, and target-pathway network were constructed to explore the mechanism of Xiaohuangsan. Totally, 78 components and 151 targets related to the eleven TCM herbs were obtained. The PPI network contains 60 targets, in which key targets involving TP53,NCOA2, TNF, MAPK14, HSP90AB1, ESR1, VEGFA and so on. There were one gene ontology (GO) entries, and one steroid binding of molecular function entries. Besides, there were 2 KEGG pathways, involving Amyotrophic lateral sclerosis (ALS) and NOD-like receptor signaling pathway. In this study, we found that Xiaohuangsan regulated target genes, such as tumor suppressor gene TP53, NCOA2, TNF and MAPK14, which enriched in steroid-binding, ALS pathways and NOD-like receptor signaling pathways to treat the horse heat syndrome. Here, we preliminarily discussed the therapeutic target and mechanism of Xiaohuangsan in treating the horse heat syndrome, and those results laid the foundation for further exploration and verification of its mechanism of action.
Key words:  Xiaohuangsan;  horse heat syndrome;  network pharmacology;  protein-protein interaction network;  gene ontdogy;  signaling pathway

参考文献/References:

[1]郑长永. 消黄散加减治牛肺热[J]. 中兽医学杂志,1990,(4):12.
[2]俞福,李建合,韩文英. 消黄散加减治疗乳牛子宫内膜炎[J].中国兽医科技,2001,31(12):38.
[3]王永科.消黄散加减治疗奶牛乳房炎效果好[J]. 中兽医医药杂志,2004,23(4):31-32.
[4]胥志平. 消黄散加减治疗耕牛喉风病[J]. 中兽医学杂志,1994,(1):5.
[5]谢向东. 消黄散加减治疗耕牛托舌癀[J]. 中兽医学杂志,1990,(2):19.
[6]陈翠华,陈喜斌. 消黄散埋植治疗猪巴氏杆菌病[J]. 中兽医学杂志,1999,(3):33-34.
[7]段锦龙,姚魁武,冯潇潇,等. 基于网络药理学方法分析中药临床治疗胸痹的作用机制[J]. 中国中药杂志,2017,42(17):3424-3429.
[8]陶瑾,姜民,陈露莹,等. 基于中药性味理论和网络药理学方法的治疗消渴方药作用机制研究[J]. 药学学报,2017,02(52):236-244.
[9]宋祯彦,王珊珊,贺旭,等. 网络药理学方法研究石菖蒲治疗神经退行性疾病的作用机制[J]. 湖南中医药大学学报,2017,37(8):848-855.
[10]濮晓红,叶庆. TP53基因在特定血液病和淋巴瘤中的研究进展[J]. 临床肿瘤学杂志,2014,(2):186-190.
[11]Belyi V A, Prashanth A, Elke M, et al. The origins and evolution of the p53 family of genes[J]. Cold Spring Harb Perspect Biol, 2010, 2(6): 968-976.
[12]Brown C J, Lain S, Verma C S, et al. Awakening guardian angels: Drugging the p53 pathway[J]. Nat Rev Cancer, 2009, 9(12): 862-873.
[13]Habtetsion T G. NCOA2基因多态性与中国汉族人2型糖尿病的关联研究[D]. 长春:吉林大学,2012.
[14]吕志敢,郭政. 肿瘤坏死因子的研究进展[J]. 山西医科大学学报,2006,37(3):311-314.
[15]邢译文,刘鑫,周林林,等. miR-638慢病毒载体的构建及其对MAPK14的靶向调控作用[J]. 免疫学杂志,2014,(9):782-786.
[16]殷飞. 肌萎缩侧索硬化信号传导通路蛋白表达谱筛选和分析[D]. 长春:吉林大学,2012.
[17]李四通,刘军龙,刘爱红,等. 环形泰勒虫感染对单核细胞中NOD样受体信号通路相关基因转录的影响[J]. 中国兽医科学,2017,08(47):964-968.
[18]Michael A, Bajracharya S D, Yuen P, et al. Exosomes from human saliva as a source of microRNA biomarkers [J]. Oral Dis, 2010, 16(1): 34-38.
[19]Wysoczynski M, Ratajczak M Z. Lung cancer secreted microvesicles: Underappreciated modulators of microenvironment in expanding tumors [J]. Int J Cancer, 2009, 125(7): 1595- 1603.
[20]Manikandan J, Aarthi J, Kumar S D, et al. Oncomirs: The potential role of non-coding microRNAs in understanding cancer[J]. Bioinformation, 2008, 2(8): 330-334.
[21]胡南,孙嘉,康远程,等. 普伐他汀对P38MAPK信号通路介导的胰岛微血管内皮细胞炎症损伤的保护作用[J]. 南方医科大学学报,2013,33(8):1232-1235.
(本文编辑:李     娜)

更新日期/Last Update: 2018-10-19