WU Xue-ying,MA Chang-jun,WANG Xiao-ping,et al.Co-expression of porcine IL-4/6 and antimicrobial peptide fusion gene in yeast and its bioactivity[J].Chinese journal of preventive veterinary medicine,2018,(09):834-841.[doi:0.3969/j.issn.1008-0589.201711040]






Co-expression of porcine IL-4/6 and antimicrobial peptide fusion gene in yeast and its bioactivity


吴雪颖1马常俊1万小平1肖永乐1胡立博1李江淩2王泽洲3吕学斌2*高 荣1*

 (1. 四川大学生命科学学院生物资源与生态环境教育部重点实验室/四川省动物疫病预防与食品安全重点实验室,
四川 成都 610064;2. 四川省畜牧科学研究院,四川 成都 610066;3. 四川省动物疫病控制中心,四川 成都 610035)
WU Xue-ying1 MA Chang-jun1 WANG Xiao-ping1 XIAO Yong-le1 HU Li-bo1 LI Jiang-ling2 WANG Ze-zhou3 LV Xue-bin2* GAO Rong1*
(1. Key Laboratory of Bio-Resource and Eco-Environment of Ministry Education, Key Laboratory of Animal Disease Prevention and Food Safety of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China; 2. Sichuan Academy of Animal Science, Chengdu 610066, China; 3. Center for Animal Disease Control of Sichuan Province, Chengdu 610035, China)
  antimicrobial peptide  porcine IL-4/6  recombinant Pichia pastoris  co-expression  immunity
:为开发高效安全经济的免疫调节剂,本研究构建了共表达猪IL-4/6和猪抗菌肽融合基因VRP的重组毕赤酵母SG46P。通过猪淋巴细胞增殖试验和抑菌试验检测其发酵上清液的生物学活性和抑菌活性,并用该重组毕赤酵母对30只21日龄雌性ICR小鼠进行灌胃接种。接种后,每周采集小鼠尾部静脉血进行免疫功能分析试验;并在第28 d用大肠杆菌和金黄色葡萄球菌进行小鼠腹腔攻毒试验。结果显示:实验组SG46P的发酵上清液较对照组能显著刺激猪淋巴细胞的增殖(p<0.05),且该发酵上清液具有明显的抑菌作用(p<0.05)。接种重组毕赤酵母SG46P的小鼠的体质量有所增加(p>0.05)且其外周血中白细胞数量、血红蛋白含量均显著高于对照组(p<0.05);其血清中IgG、IgG1和IgG2a抗体水平均较对照组显著增加(p<0.05),其外周血中CD4+ T和CD8+ T淋巴细胞数量均显著高于对照组(p<0.05);TLR4、TLR9、IL-2、IFN-γ、IL-4、IL-6、CD62L、IL-7、IL-23、CAMP和Crp4基因的转录水平均显著高于对照组(p<0.05)。攻毒后,接种SG46P的小鼠的生存率显著高于对照组(p<0.05)。结果表明:重组毕赤酵母SG46P不仅能够显著提高小鼠免疫基因的转录水平,有效提高动物的先天和获得性免疫水平,还可明显增强小鼠抗感染能力,这为研制高效安全经济的分子免疫调节剂和防治动物传染病开拓了新途径。
To develop an efficient and economical immunomodulator, the recombinant Pichia pastoris SG46P was constructed to co-express porcine IL-4/6 and antimicrobial peptide fused gene (VRP). The bioactivity and antibacterial activity of the expressed fusion protein in the culture medium were identified by proliferation assay of porcine lymphocytes and antibacterial assay. In addition, thirty 21-day old female ICR mice were feed with the recombinant yeasts by gavage and the blood samples was collected via tail vein weekly for immunological analysis. On the 28th day, the mice were challenged by injecting E.coli and S.aureus into the abdominal cavity. The results showed that the proliferation of porcine lymphocytes was significantly promoted in the treated group (p<0.05), and the replication of bacteria was dramatically inhibited (p<0.05). After inoculation of the recombinant yeasts, the treated mice gained slightly body weight (p>0.05). The leukocytes and hemoglobin obviously increased in the peripheral blood of the treated mice (p<0.05). In comparison with the control group, the CD4+ and CD8+ T cells markedly raised in the blood of the treated group and the levels of IgG, IgG1 and IgG2a also significantly increased (p<0.05). Similarly, the expression levels of TLR4, TLR9, IL-7, IL-23, CD62L, IL-2, IL-4, IL-6, IFN-γ, CAMP and Crp4 genes were significantly higher than those in the control groups (p<0.05). Meanwhile, the survival rate of the treated mice was higher than that of mice in control groups after challenge with pathogenic bacteria (p<0.05). These results suggest that the recombinant P.pastoris SG46P could not only promote the innate and adaptive immunity in mice, but also significantly enhance the antibacterial function of mice, which could be further developed as a promising immunomodulator for the control of animal infectious diseases.


[1]Adam D. Global antibiotic resistance in Streptococcus pneumonia [J]. J Antimicrob Chemother, 2002, 50(Suppl): 1-5.
[2]Egan M A, Israel Z R. The use of cytokines and chemokines as genetic adjuvants for plasmid DNA vaccines [J]. Clin Appl Immunol Rev, 2002, 2: 255-287.
[3]Lee T H, N. Hall K, Aguilar M I. Antimicrobial peptide structure and mechanism of action: A focus on the role of membrane structure [J]. Curr Top Med Chem, 2016, 16(1): 25-39.
[4]Kishimoto T. IL-6: from its discovery to clinical applications [J]. Int Immunol, 2010, 22(5): 347-352.
[5]Zhang Huan, Cheng Chi, Zheng Min, et al. Enhancement of immunity to an Escherichia coli vaccine in mice orally inoculated with a fusion gene encoding porcine interleukin 4 and 6 [J]. Vaccine, 2007, 25(41): 7094-7101.
[6]Yang Xiao, Xiao Yong-le, Chen Jian-lin, et al. Potentiation of immunity of piglets to Mycoplasma hyopneumoniae vaccine with fused gene for pig IL-4 and IL-6 embodied in chitosan nanoparticles [J]. Procedia Vaccinol, 2013, 7: 15-22.
[7]Gordon Y J, Romanowski E G. A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs [J]. Curr Eye Res, 2005, 2: 505-515.
[8]Bals R, Wilson J M. Cathelicidins- a family of multifunctional  antimicrobial peptides [J]. Cell Mol Life Sci, 2003, 60(4): 711-720.
[9]Kelli W, Robert E W. New insights into cathelicidin modulation of adaptive immunity [J]. Eur J Immunol, 2011, 41(10): 2817- 2819.
[10]de Felipe P, Hughes L E, Ryan M D, et al. Co-translational, intra ribosomal cleavage of polypeptides by the foot-and-mouth disease virus 2A peptide [J]. J Biol Chem, 2003, 278: 11441- 11448.
[11]Niyonsaba F, Nagaoka I, Ogawa H, et al. Multifunctional antimicrobial proteins and peptides: Natural activators of immune systems [J]. Curr Pharm Des, 2009, 15: 2393-2413.
[12]Ageitos J M, Sanchez-Perez A, Calo-Mata P, et al. Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria [J]. Biochem Pharmacol, 2017, 133: 117-138
[13]Andrea L S, Creg J W, Yao W, et al. Correction of multi-gene deficiency in vivo using a single ’self-cleaving’ 2A peptide-based retroviral vector [J]. Nat Biotechnol, 2004, 22: 589-595.
[14]Pasare C, Medzhitov R. Toll-like receptors: Linking innate and adaptive immunity [J]. Microbes Infect, 2004, 6(15): 1382- 1387.
[15]Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors [J]. Nat Immunol, 2010, 11: 373-384.
[16]Stevceva L, Moniuszko M, Ferrari M G. Utilizing IL-12, IL-15 and IL-7 as mucosal vaccine adjuvants [J]. Lett Drug Des Discov, 2006, 3(8): 586-592.
(本文编辑:李   娜)


 SHAN Xiao-feng,ZHANG Hong-bo,GUO Wei-sheng,et al.Extraction and purification of antibacterial peptides CSM14 from mucus surface of Channa rgus and its Partial Biological activity[J].Chinese journal of preventive veterinary medicine,2010,(09):210.
 SUN Wen-yu,MA Qing-quan,SHAN An-shan*,et al.Design of a amphipathic and α-helical antimicrobial peptidewith Val and Lys residues[J].Chinese journal of preventive veterinary medicine,2013,(09):1008.[doi:10.3969/j.issn.1008-0589.2013.12.13]
[3]王 臣*,张巫凡,牛明福,等.天蚕素类抗菌肽CLP的设计及其活性测定[J].中国预防兽医学报,2016,(08):600.[doi:10.3969/j.issn.1008-0425.2016.08.02]
 WANG Chen*,ZHANG Wu-fan,NIU Ming-fu,et al.Molecular design and antibacterial activity of cecropin-like antibacterial peptide[J].Chinese journal of preventive veterinary medicine,2016,(09):600.[doi:10.3969/j.issn.1008-0425.2016.08.02]

更新日期/Last Update: 2018-10-19