[1]秦小彬,伍晨露,彭远义*.细菌脂蛋白功能的研究进展[J].中国预防兽医学报,2018,(07):650-654.[doi:10.3969/j.issn.1008-0589.201705046]
 [J].Chinese journal of preventive veterinary medicine,2018,(07):650-654.[doi:10.3969/j.issn.1008-0589.201705046]
点击复制

细菌脂蛋白功能的研究进展()
分享到:

《中国预防兽医学报》[ISSN:1008-0589/CN:23-1417/S]

卷:
期数:
2018年07
页码:
650-654
栏目:
综述
出版日期:
2018-08-15

文章信息/Info

文章编号:
1008-0589(2018)7-0650-05
作者:
 秦小彬伍晨露彭远义*
 (西南大学 动物科技学院,重庆 400715)
分类号:
S852.61
DOI:
10.3969/j.issn.1008-0589.201705046
文献标志码:
A

参考文献/References:

[1]Buddelmeijer N. The molecular mechanism of bacterial lipoprotein modification--how, when and why?[J]. FEMS Microbiol Rev, 2015, 39(2): 246-261.
[2]Lovullo E D, Wright L F, Isabella V, et al. Revisiting the Gram-negative lipoprotein paradigm [J]. J Bacteriol, 2015, 197(10): 1705-1715.
[3]Hutchings M I, Palmer T, Harrington D J, et al. Lipoprotein biogenesis in Gram-positive bacteria: knowing when to hold ’em, knowing when to fold ’em [J]. Trends Microbiol, 2009, 17(1): 13-21.
[4]Nakayama H, Kurokawa K, Lee B L. Lipoproteins in bacteria: structures and biosynthetic pathways [J]. FEBS J, 2012, 279(23): 4247-4268.
[5]Schenk M, Belisle J T, Modlin R L. TLR2 looks at lipoproteins[J]. Immunity, 2009, 31(6): 847-849.
[6]Okuda S, Tokuda H. Lipoprotein sorting in bacteria [J]. Annu Rev Microbiol, 2011, 65: 239-259.
[7]Zuckert W R. Secretion of bacterial lipoproteins: through the cytoplasmic membrane, the periplasm and beyond [J]. Biochim Biophys Acta, 2014, 1843(8): 1509-1516.
[8]Shahmirzadi S V, Nguyen M T, Gotz F. Evaluation of Staphylococcus aureus lipoproteins: role in nutritional acquisition and pathogenicity [J]. Front Microbiol, 2016, 7: 1404.
[9]Schmaler M, Jann N J, Ferracin F, et al. Lipoproteins in Staphylococcus aureus mediate inflammation by TLR2 and iron-dependent growth in vivo [J]. J Immunol, 2009, 182(11): 7110-7118.
[10]Mariotti P, Malito E, Biancucci M, et al. Structural and functional characterization of the Staphylococcus aureus virulence factor and vaccine candidate FhuD2 [J]. Biochem J, 2013, 449(3): 683-693.
[11]Kohler S, Voss F, Gomez M A, et al. Pneumococcal lipoproteins involved in bacterial fitness, virulence, and immune evasion[J]. FEBS Lett, 2016, 590(21): 3820-3839.
[12]Morton D J, Seale T W, Bakaletz L O, et al. The heme-binding protein (HbpA) of Haemophilus influenzae as a virulence determinant [J]. Int J Med Microbiol, 2009, 299(7): 479-488.
[13]Uematsu S, Akira S. Toll-like receptors and innate immunity [J]. J Mol Med (Berl), 2006, 84(9): 712-725.
[14]Kovacs-Simon A, Titball R W, Michell S L. Lipoproteins of bacterial pathogens [J]. Infect Immun, 2011, 79(2): 548-561.
[15]Bulut Y, Faure E, Thomas L, et al. Cooperation of Toll-like receptor 2 and 6 for cellular activation by soluble tuberculosis factor and Borrelia burgdorferi outer surface protein A lipoprotein: role of Toll-interacting protein and IL-1 receptor signaling molecules in Toll-like receptor 2 signaling [J]. J Immunol, 2001, 167(2): 987-994.
[16]Kurokawa K, Lee H, Roh K B, et al. The Triacylated ATP binding cluster transporter substrate-binding lipoprotein of  Staphylococcus aureus functions as a native ligand for toll-like receptor 2 [J]. J Biol Chem, 2009, 284(13): 8406-8411.
[17]Nguyen M T, Gotz F. Lipoproteins of Gram-positive bacteria: key players in the immune response and virulence [J]. Microbiol Mol Biol Rev, 2016, 80(3): 891-903.
[18]Pecora N D, Gehring A J, Canaday D H, et al. Mycobacterium tuberculosis LprA is a lipoprotein agonist of TLR2 that regulates innate immunity and APC function [J]. J Immunol, 2006, 177(1): 422-429.
[19]Sanchez A, Espinosa P, Garcia T, et al. The 19 kDa Mycobacterium tuberculosis lipoprotein (LpqH) induces macrophage apoptosis through extrinsic and intrinsic pathways: a role for the mitochondrial  apoptosis-inducing factor [J]. Clin Dev Immunol, 2012, 2012: 950503.
[20]Morrison T B, Weis J H, Weis J J. Borrelia burgdorferi outer surface protein A (OspA) activates and primes human neutrophils [J]. J Immunol, 1997, 158(10): 4838-4845.
[21]Nishiguchi M, Matsumoto M, Takao T, et al. Mycoplasma fermentans lipoprotein M161Ag-induced cell activation is mediated by Toll-like receptor 2: role of N-terminal hydrophobic portion in its multiple functions [J]. J Immunol, 2001, 166(4): 2610- 2616.
[22]Shukla S, Richardson E T, Athman J J, et al. Mycobacterium tuberculosis lipoprotein LprG binds lipoarabinomannan and determines its cell envelope localization to control phagolysosomal fusion [J]. PLoS Pathog, 2014, 10(10): e1004471.
[23]Martinot A J, Farrow M, Bai L, et al. Mycobacterial metabolic syndrome: LprG and Rv1410 regulate triacylglyceride levels, growth rate and virulence in Mycobacterium tuberculosis [J]. PLoS Pathog, 2016, 12(1): e1005351.
[24]Giambartolomei G H, Zwerdling A, Cassataro J, et al. Lipopro teins, not lipopolysaccharide, are the key mediators of the proinflammatory response elicited by heat-killed Brucella abortus [J]. J Immunol, 2004, 173(7): 4635-4642.
[25]Byun E H, Kim W S, Kim J S, et al. Mycobacterium tuberculosis Rv0577, a novel TLR2 agonist, induces maturation of dendritic cells and drives Th1 immune response [J]. FASEB J, 2012, 26(6): 2695-2711.
[26]Drage M G, Tsai H C, Pecora N D, et al. Mycobacterium tuberculosis lipoprotein LprG (Rv1411c) binds triacylated glycolipid agonists of Toll-like receptor 2 [J]. Nat Struct Mol Biol, 2010, 17(9): 1088-1095.
[27]Chen Su-ting, Li Jia-yun, Zhang yi, et al. Recombinant MPT83 derived from Mycobacterium tuberculosis induces cytokine production and upregulates the function of mouse macrophages through TLR2 [J]. J Immunol, 2012, 188(2): 668-677.
[28]Hsu S H, Lo Y Y, Tung J Y, et al. Leptospiral outer membrane lipoprotein LipL32 binding on toll-like receptor 2 of  renal cells as determined with an atomic force microscope [J]. Biochemistry, 2010, 49(26): 5408-5417.
[29]Zhang Rui-li, Wang Qian-qiu, Zhang Jing-ping, et al. Tp17 membrane protein of Treponema pallidum activates endothelial cells in vitro [J]. Int Immunopharmacol, 2015, 25(2): 538-544.
[30]Cron L E, Bootsma H J, Noske N, et al. Surface-associated lipoprotein PpmA of Streptococcus pneumoniae is involved in colonization in a strain-specific manner [J]. Microbiology, 2009, 155(Pt 7): 2401-2410.
[31]Hermans P W, Adrian P V, Albert C, et al. The streptococcal lipoprotein rotamase A (SlrA) is a functional peptidyl-prolyl isomerase involved in pneumococcal colonization [J]. J Biol Chem, 2006, 281(2): 968-976.
[32]Spellerberg B, Rozdzinski E, Martin S, et al. Lmb, a protein with similarities to the LraI adhesin family, mediates attachment  of Streptococcus agalactiae to human laminin [J]. Infect Immun, 1999, 67(2): 871-878.
[33]Terao Y, Kawabata S, Kunitomo E, et al. Novel laminin-binding protein of Streptococcus pyogenes, Lbp, is involved in adhesion to epithelial cells [J]. Infect Immun, 2002, 70(2): 993-997.
[34]Gehring A J, Dobos K M, Belisle J T, et al. Mycobacterium tuberculosis LprG (Rv1411c): a novel TLR-2 ligand that inhibits human macrophage class II MHC antigen processing [J]. J Immunol, 2004, 173(4): 2660-2668.
[35]Su Hai-bo, Zhu Sheng-lin, Zhu Lin, et al. Recombinant lipoprotein Rv1016c derived from Mycobacterium tuberculosis Is a TLR-2 ligand that induces macrophages apoptosis and inhibits MHC II antigen processing [J]. Front Cell Infect Microbiol, 2016, 6: 147.
[36]Deboosere N, Iantomasi R, Queval C J, et al. LppM impact on the colonization of macrophages by Mycobacterium tuberculosis[J]. Cell Microbiol, 2017, 19(1), doi:10.1111/cmi.12619.
[37]Okugawa S, Moayeri M, Pomerantsev AP, et al. Lipoprotein biosynthesis by prolipoprotein diacylglyceryl transferase is required for efficient spore germination and full virulence of Bacillus anthracis [J]. Mol Microbiol, 2012, 83(1): 96-109.
[38]Reffuveille F, Serror P, Chevalier S, et al. The prolipoprotein diacylglyceryl transferase (Lgt) of Enterococcus faecalis contributes to virulence [J]. Microbiology, 2012, 158(Pt 3): 816- 825.
[39]Baumgartner M, Karst U, Gerstel B, et al. Inactivation of Lgt allows systematic characterization of lipoproteins from Listeria monocytogenes [J]. J Bacteriol, 2007, 189(2): 313-324.
[40]Reglier-Poupet H, Frehel C, Dubail I, et al. Maturation of lipoproteins by type II signal peptidase is required for phagosomal escape of Listeria monocytogenes [J]. J Biol Chem, 2003, 278(49): 49469-49477.
[41]Sander P, Rezwan M, Walker B, et al. Lipoprotein processing is required for virulence of Mycobacterium tuberculosis [J]. Mol Microbiol, 2004, 52(6): 1543-1552.
[42]Stoll H, Dengjel J, Nerz C, et al. Staphylococcus aureus deficient in lipidation of prelipoproteins is attenuated in growth and immune activation [J]. Infect Immun, 2005, 73(4): 2411-2423.
[43]Bubeck W J, Williams W A, Missiakas D. Host defenses against Staphylococcus aureus infection require recognition of bacterial lipoproteins [J]. Proc Natl Acad Sci USA, 2006, 103(37): 13831-13836.
[44]Henneke P, Dramsi S, Mancuso G, et al. Lipoproteins are critical TLR2 activating toxins in group B Streptococcal sepsis [J]. J Immunol, 2008, 180(9): 6149-6158.
[45]Hamilton A, Robinson C, Sutcliffe I C, et al. Mutation of the maturase lipoprotein attenuates the virulence of Streptococcus equi to a greater extent than does loss of general lipoprotein lipidation [J]. Infect Immun, 2006, 74(12): 6907-6919.
[46]Khandavilli S, Homer K A, Yuste J, et al. Maturation of Streptococcus pneumoniae lipoproteins by a type II signal peptidase is required for ABC transporter function and full virulence [J]. Mol Microbiol, 2008, 67(3): 541-557.
[47]Weston B F, Brenot A, Caparon M G. The metal homeostasis protein, Lsp, of Streptococcus pyogenes is necessary for acquisition of zinc and virulence [J]. Infect Immun, 2009, 77(7): 2840-2848.
[48]Das S, Kanamoto T, Ge X, et al. Contribution of lipoproteins and lipoprotein processing to endocarditis virulence in Streptococcus sanguinis [J]. J Bacteriol, 2009, 191(13): 4166-4179.
[49]Gribenko A, Mosyak L, Ghosh S, et al. Three-dimensional structure and biophysical characterization of Staphylococcus aureus cell surface antigen-manganese transporter MntC [J]. J Mol Biol, 2013, 425(18): 3429-3445.
[50]Tabynov K, Sansyzbay A, Kydyrbayev Z, et al. Influenza viral vectors expressing the Brucella OMP16 or L7/L12 proteins as vaccines against B.abortus infection [J]. Virol J, 2014, 11: 69.
[51]Philipp M T, Lobet Y, Bohm R J, et al. The outer surface protein A (OspA) vaccine against Lyme disease: efficacy in the  rhesus monkey [J]. Vaccine, 1997, 15(17-18): 1872-1887.
[52]Marshall H S, Richmond P C, Nissen M D, et al. Safety and immunogenicity of a meningococcal B bivalent rLP2086 vaccine in healthy toddlers aged 18-36 months: a phase 1 randomized-controlled clinical trial [J]. Pediatr Infect Dis J, 2012, 31(10): 1061-1068.
[53]Dunne A, Mielke L A, Allen A C, et al. A novel TLR2 agonist from Bordetella pertussis is a potent adjuvant that promotes protective immunity with an acellular pertussis vaccine [J]. Mucosal Immunol, 2015, 8(3): 607-617.
[54]Vu C H, Kolata J, Stentzel S, et al. Adaptive immune response to lipoproteins of Staphylococcus aureus in healthy subjects [J]. Proteomics, 2016, 16(20): 2667-2677.
[55]Kurokawa K, Kim M S, Ichikawa R, et al. Environment-mediated accumulation of diacyl lipoproteins over their triacyl counterparts in Staphylococcus aureus [J]. J Bacteriol, 2012, 194(13): 3299-3306.
                      (本文编辑:李 娜)

更新日期/Last Update: 2018-08-15